Nb₃Al R&D for Future Accelerator Applications

March 18, 2003 K. Tsuchiya KEK

Outline

- Introduction
- Fabrication method
- ◆ Features of RQ Nb₃Al wire
- Development target
- Progress
- Present status
- Summary

Introduction

- Nb₃Al has better strain tolerance than Nb₃Sn
- Rapid quenching process wires have been developed in NIMS (National Institute for Materials Science), Japan
 - candidate conductor for a high-resolution NMR system operated at 23.5 T
 - rapid quenching facilities are in operation at NIMS and Hitachi Cable Ltd.
- KEK started the RQ Nb₃Al R&D for future accelerator applications in collaboration with NIMS

Strain characteristics of Nb₃Al and Nb₃Sn wires

For a given degradation of Ic at 12T, Nb₃Al tolerates about twice the strain of the Nb₃Sn.

Ic degradation, caused by stress or strain, becomes larger at higher field.

Appl. Phys. Lett. 71(1),7 (1997) p.122. by T. Takeuchi et al.

Fabrication process of RQ-JR wire

Rapid quenching apparatus

Typical cross sectional image of $Nb(Al)_{ss}/Nb$ composite

Wire dia.: 0.8 mm Filament dia.: $\sim 55 \mu m$

Matrix ratio: 1.0 Num. of filaments: 144

Features of RQ Nb₃Al wire

• Nb matrix

- How to incorporate copper stabilizer electrical Cu plating, mechanical cladding
- Magnetization of Nb

bcc Nb(Al)ss has good ductility at room temp.

- RQ wire can be bent, stranded to a cable and wound to a coil before making A-15 phase
- Jc can be increased by area reduction of the wire

Magnetization curves for Nb₃Al wires

Nb matrix

Ta matrix

Development target

• Jc (non copper, 10T, 4.2 K): 2,000 A/mm² or more

• Wire diameter: 0.6 - 0.8 mm

• Effective filament size: $50 \mu m$ or less

Copper stabilized wire

Progress

• Development of large Ic measurement holder

current capacity ~ 1000 A, 4 samples sample length: 300 mm (Ic criterion: 3 μ V/15 cm) B_{ext}: 0 \sim 17 T @ 4.2 K

- Development of Copper electro-plating technique ~0.2 mm thickness
- Preliminary study to increase Jc
 - effect of barrier thickness between filaments
 - effect of heat treatment conditions
 - effect of area reduction of the RQ wire

Large Ic measurement holder

Typical ramp rate: 4.5 A/sec

for 1000 A

Heating at 1000 A: less than 80 mW/lead ($\Delta T < 10$ mK)

Typical V-I trace of Nb₃Al wire

Nb₃Al R&D present status

non copper Jc

Wire dia.: 0.69 mm

Matrix ratio: 1.0

Filament dia.: 50 µm

Jc = 1738 A/mm2 @ 10 T 1303 @ 12 T

775 @ 15 T

- Steps toward improvements in Jc

- Reduce the matrix ratio

1.0 to 0.8 will increase the Jc about 11 % 1.0 to 0.6 25 %

- Optimize the area reduction ratio
- Optimize the heat treatment conditions

• Stabilization technique

- electro-plating technique is usable for Ic test
- need new technique to get better contact between
 Cu and Nb

Production scale

- piece length: ~300 m

Summary

- Preliminary studies of Jc improvements have been done. Low Nb matrix ratio wire will be investigated next.
- Large Ic measurement holder has been developed and used for the studies of Nb₃Al.
- Electro-plating technique is usable for Ic measurement, but we need new technique to get better contact between Nb and Cu.
- Present production scale is too small for acc magnet applications. It must be improved in the future.
- Since the strain tolerance of Nb₃Al is very attractive for high field magnet, the development of Nb₃Al should be continued as an alternative to Nb₃Sn.